Dynamic Emotion Modeling With Learnable Graphs and Graph Inception Network

نویسندگان

چکیده

Human emotion is expressed, perceived and captured using a variety of dynamic data modalities, such as speech (verbal), videos (facial expressions) motion sensors (body gestures). We propose generalized approach to recognition that can adapt across modalities by modeling structured graphs. The motivation behind the graph build compact models without compromising on performance. To alleviate problem optimal construction, we cast this joint learning classification task. end, present Learnable Graph Inception Network (L-GrIN) jointly learns recognize identify underlying structure in data. Our architecture comprises multiple novel components: new convolution operation, inception layer, learnable adjacency, pooling function yields graph-level embedding. evaluate proposed five benchmark databases spanning three different (video, audio, capture), where each database captures one following emotional cues: facial expressions, body gestures. achieve state-of-the-art performance all outperforming several competitive baselines relevant existing methods. shows superior with significantly fewer parameters (compared convolutional or recurrent neural networks) promising its applicability resource-constrained devices. code available at https://github.com/AmirSh15/graph_emotion_recognition.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Dynamic Production Systems with Network Structure

This paper deals with the problem of optimizing two-stage structure decision making units (DMUs) where the activity and the performance of two-stage DMU in one period effect on its efficiency in the next period. To evaluate such systems the effect of activities in one period on ones in the next term must be considered. To do so, we propose a dynamic DEA approach to measure the performance of su...

متن کامل

dynamic coloring of graph

در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...

15 صفحه اول

modeling dynamic production systems with network structure

this paper deals with the problem of optimizing two-stage structure decision making units (dmus) where the activity and the performance of two-stage dmu in one period effect on its efficiency in the next period. to evaluate such systems the effect of activities in one period on ones in the next term must be considered. to do so, we propose a dynamic dea approach to measure the performance of su...

متن کامل

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

connected graphs cospectral with a friendship graph

let $n$ be any positive integer, the friendship graph $f_n$ consists of $n$ edge-disjoint triangles that all of them meeting in one vertex. a graph $g$ is called cospectral with a graph $h$ if their adjacency matrices have the same eigenvalues. recently in href{http://arxiv.org/pdf/1310.6529v1.pdf}{http://arxiv.org/pdf/1310.6529v1.pdf} it is proved that if $g$ is any graph cospectral with $f_n$...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Multimedia

سال: 2022

ISSN: ['1520-9210', '1941-0077']

DOI: https://doi.org/10.1109/tmm.2021.3059169